#tvae #topographic #equivariant




Variational Autoencoders model the latent space as a set of independent Gaussian random variables, which the decoder maps to a data distribution. However, this independence is not always desired, for example when dealing with video sequences, we know that successive frames are heavily correlated. Thus, any latent space dealing with such data should reflect this in its structure. Topographic VAEs are a framework for defining correlation structures among the latent variables and induce equivariance within the resulting model. This paper shows how such correlation structures can be built by correctly arranging higher-level variables, which are themselves independent Gaussians.




OUTLINE:


0:00 - Intro


1:40 - Architecture Overview


6:30 - Comparison to regular VAEs


8:35 - Generative Mechanism Formulation


11:45 - Non-Gaussian Latent Space


17:30 - Topographic Product of Student-t


21:15 - Introducing Temporal Coherence


24:50 - Topographic VAE


27:50 - Experimental Results


31:15 - Conclusion & Comments




Paper: https://arxiv.org/abs/2109.01394


Code: https://github.com/akandykeller/topog...




Abstract:


In this work we seek to bridge the concepts of topographic organization and equivariance in neural networks. To accomplish this, we introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables. We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST. Furthermore, through topographic organization over time (i.e. temporal coherence), we demonstrate how predefined latent space transformation operators can be encouraged for observed transformed input sequences -- a primitive form of unsupervised learned equivariance. We demonstrate that this model successfully learns sets of approximately equivariant features (i.e. "capsules") directly from sequences and achieves higher likelihood on correspondingly transforming test sequences. Equivariance is verified quantitatively by measuring the approximate commutativity of the inference network and the sequence transformations. Finally, we demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.




Authors: T. Anderson Keller, Max Welling




Links:


TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick


YouTube: https://www.youtube.com/c/yannickilcher


Twitter: https://twitter.com/ykilcher


Discord: https://discord.gg/4H8xxDF


BitChute: https://www.bitchute.com/channel/yann...


Minds: https://www.minds.com/ykilcher


Parler: https://parler.com/profile/YannicKilcher


LinkedIn: https://www.linkedin.com/in/ykilcher


BiliBili: https://space.bilibili.com/1824646584




If you want to support me, the best thing to do is to share out the content :)




If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):


SubscribeStar: https://www.subscribestar.com/yannick...


Patreon: https://www.patreon.com/yannickilcher


Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq


Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2


Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m


Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Twitter Mentions