#deeplearning #neuralinterpreter #ai




This video includes an interview with the paper's authors!


What if we treated deep networks like modular programs? Neural Interpreters divide computation into small modules and route data to them via a dynamic type inference system. The resulting model combines recurrent elements, weight sharing, attention, and more to tackle both abstract reasoning, as well as computer vision tasks.




OUTLINE:


0:00 - Intro & Overview


3:00 - Model Overview


7:00 - Interpreter weights and function code


9:40 - Routing data to functions via neural type inference


14:55 - ModLin layers


18:25 - Experiments


21:35 - Interview Start


24:50 - General Model Structure


30:10 - Function code and signature


40:30 - Explaining Modulated Layers


49:50 - A closer look at weight sharing


58:30 - Experimental Results




Paper: https://arxiv.org/abs/2110.06399




Guests:


Nasim Rahaman: https://twitter.com/nasim_rahaman


Francesco Locatello: https://twitter.com/FrancescoLocat8


Waleed Gondal: https://twitter.com/Wallii_gondal




Abstract:


Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call \emph{functions}. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization




Authors: Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf




Links:


TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick


YouTube: https://www.youtube.com/c/yannickilcher


Twitter: https://twitter.com/ykilcher


Discord: https://discord.gg/4H8xxDF


BitChute: https://www.bitchute.com/channel/yann...


LinkedIn: https://www.linkedin.com/in/ykilcher


BiliBili: https://space.bilibili.com/2017636191




If you want to support me, the best thing to do is to share out the content :)




If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):


SubscribeStar: https://www.subscribestar.com/yannick...


Patreon: https://www.patreon.com/yannickilcher


Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq


Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2


Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m


Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Twitter Mentions