#decisiontransformer #reinforcementlearning #transformer




Proper credit assignment over long timespans is a fundamental problem in reinforcement learning. Even methods designed to combat this problem, such as TD-learning, quickly reach their limits when rewards are sparse or noisy. This paper reframes offline reinforcement learning as a pure sequence modeling problem, with the actions being sampled conditioned on the given history and desired future rewards. This allows the authors to use recent advances in sequence modeling using Transformers and achieve competitive results in Offline RL benchmarks.




OUTLINE:


0:00 - Intro & Overview


4:15 - Offline Reinforcement Learning


10:10 - Transformers in RL


14:25 - Value Functions and Temporal Difference Learning


20:25 - Sequence Modeling and Reward-to-go


27:20 - Why this is ideal for offline RL


31:30 - The context length problem


34:35 - Toy example: Shortest path from random walks


41:00 - Discount factors


45:50 - Experimental Results


49:25 - Do you need to know the best possible reward?


52:15 - Key-to-door toy experiment


56:00 - Comments & Conclusion




Paper: https://arxiv.org/abs/2106.01345


Website: https://sites.google.com/berkeley.edu...


Code: https://github.com/kzl/decision-trans...




Abstract:


We present a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.




Authors: Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch




Links:


TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick


YouTube: https://www.youtube.com/c/yannickilcher


Twitter: https://twitter.com/ykilcher


Discord: https://discord.gg/4H8xxDF


BitChute: https://www.bitchute.com/channel/yann...


Minds: https://www.minds.com/ykilcher


Parler: https://parler.com/profile/YannicKilcher


LinkedIn: https://www.linkedin.com/in/yannic-ki...


BiliBili: https://space.bilibili.com/1824646584




If you want to support me, the best thing to do is to share out the content :)




If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):


SubscribeStar: https://www.subscribestar.com/yannick...


Patreon: https://www.patreon.com/yannickilcher


Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq


Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2


Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m


Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Twitter Mentions