Much of condensed matter physics is concerned with understanding how different kinds of order emerge from interactions between a large number of simple constituents. In ordered phases such as crystals, magnets, and superfluids, the order is understood through ”symme- try breaking”: in a crystal, for example, the continuous symmetries of space under rotations and translations are not reflected in the ground state. A major discovery of the 1980s was that electrons confined to two dimensions and in a strong magnetic field exhibit a completely different, ”topological” type of order that underlies the quantum Hall effect.
In the past few years, we have learned that topological order also occurs in some three-dimensional materials, dubbed ”topological in- sulators”, in zero magnetic field. Spin-orbit coupling, an intrinsic property of all solids, drives the formation of the topological state. This talk will explain what topological order means, how topologi- cal were predicted and discovered, and how they realize the ”axion electrodynamics” studied by particle physicists in the 1980s. Some possible applications of these new materials are discussed in closing.