Previous Episode: Vier Farben
Next Episode: Julia Sets

Lorenz Schwachhöfer ist seit 2003 Professor für Mathematik an der TU Dortmund. Gudrun kennt ihn aus ihrer Zeit als als Hochuldozentin dort (2004-2008). Seinen kurzen Gastaufenthalt in der AG von Prof. Tuschmann in Karlsruhe wollten die beiden ausnutzen, um ein Podcast-Gespräch zu führen. Das Forschungsgebiet von Lorenz Schwachhöfer gehört zur Differentialgeometrie. Deshalb dreht sich ihr Gespräch um zentrale Begriffe in diesem mathematischen Gebiet zwischen Geometrie und Analysis: Die Krümmung und das Finden von Minimalflächen.

Der Begriff Krümmung kommt in unserer Alltagssprache vor. Die Mathematik muss das Konzept von "gekrümmt sein" nur klar fassen, um damit präzise arbeiten zu können. Die zentrale Eigenschaft, die durch das Wort beschrieben wird, ist wie sehr sich eine Fläche von einer Ebene unterscheidet. Oder auch wie stark sich eine Kurve von einer Geraden unterscheidet. Eine Ebene (bzw.eine Gerade) ist nicht gekrümmt. Mathematisch ausgedrückt haben sie deshalb die Krümmung 0. Wenn man nun untersuchen - und mit einer Zahl ausdrücken - möchte, wie sehr sich z.B. eine Kurve in jedem Punkt von eine Gerade unterscheidet, verwendet man folgenden Trick: Man definiert einen Parameter - z.B. die Bogenlänge - und stellt die Kurve als Funktion dieses Parameters dar. Dann berechnet man die Änderung des Richtungsvektors der Kurve in jedem Punkt. D.h. man braucht die zweite Ableitung nach dem Parameter in dem Punkt. Das Ergebnis für einen Kreis mit Radius r lautet dann: Er hat überall die Krümmung 1/r. Daran sieht man auch, dass kleine Kreise sehr stark gekrümmt sind während sehr große Kreise eine so kleine Krümmung haben, dass man sie fast nicht von einer Geraden unterscheiden kann. Auch die Erdoberfläche wirkt lokal wie eine Ebene, denn in der mit unseren Augen wahrgenommenen Umgebung ist ihre Krümmung klein.

Was für Kurven recht anschaulich zu definieren geht, ist für Flächen im dreidimensionalen Raum nicht ganz so klar. Das einzig klare ist, dass für jede Art Krümmung, die man mathematisch definiert, jede Ebene in jedem Punkt die Krümmung 0 haben muss. Wenn man die Idee der Parametrisierung auf Flächen überträgt, geht das im Prinzip auch, wenn man zwei Parameter einführt und Krümmung auf eine bestimmte Richtung im Punkt auf der Fläche entlang bezieht. Beim Zylinder kann man sich gut vorstellen, wie das Ergebnis aussieht: Es gibt die Richtung entlang der Kreislinie des Querschnitts. Diese Kurve ist ein Kreis und hat die Krümmung 1/r. Läuft man dazu im rechten Winkel auf der Zylinderhülle, folgt man einer Gerade (d.h. Krümmung in diese Richtung ist 0). Alle anderen Wege auf der Zylinderoberfläche liegen in Bezug auf die Krümmung zwischen diesen beiden Werten 1/r und 0.

Tatsächlich kann man auch für allgemeine Flächen zeigen, dass man in jedem Punkt eine Zerlegung in zwei solche "Haupt"-Richtungen findet, für die maximale bzw. minimale Krümmungswerte gelten (und die senkrecht zueinander sind). Alle anderen Richtungen lassen sich daraus linear zusammensetzen. Die Kugeloberfläche hat z.B. eine hohe Symmetrie und verhält sich in allen Richtungen gleich. Alle Wege auf der Kugeloberfläche sind lokal Teile von Kreisen. Man kann sich hier auch überlegen, was tangential bedeutet, indem man in einem Punkt auf der Oberfläche eine Ebene anschmiegt. Die Richtung senkrecht auf dieser tangentialen Ebene ist die Normalenrichtung auf dem Punkt der Kugeloberfläche an dem die Tangentialebene anliegt.

Tatsächlich gibt es für Flächen aber mehr als einen sinnvollen Krümmungsbegriff. Man kann z.B. einen Zylinder sehr schön in Papier "einwickeln". Bei einer Kugel geht das nicht - es bleibt immer Papier übrig, das man wegfalten muss. Wenn man einen Kühlturm einpacken möchte, reicht das Papier nicht für die nach innen einbuchtende Oberfläche. Die Eigenschaft, die wir mir dem Einwickeln veranschaulicht haben, wird mit dem Begriff der Gaußkrümmung ausgedrückt. Um sie zu berechnen, kann man in einem Punkt die oben definierten Richtungsskrümmungen anschauen. Maximal- und Minimalwerte werden für senkrecht aufeinander stehende Richtungen realisiert. Das Produkt der beiden extremen Krümmungen ergibt dann die Gaußkrümmung. In unserem Beispiel mit dem Zylinder ist die Gaußkrümmung also 0 mal 1/r = 0.

Das ist aber tatsächlich ganz unabhängig von der Richtungskrümmung untersuchbar, weil es sich durch Längen- bzw. Flächenverhältnisse in der Fläche bestimmen lässt. Genauer gesagt: Wenn man auf der Kugel um einen Punkt einen Kreis auf der Kugeloberfläche zieht (d.h. seine Punkte liegen auf der Kugeloberfläche und haben alle den Abstand r vom gewählten Punkt), hat dieses Objekt einen kleineren Flächeninhalt als ein ebener Kreis mit dem gleichen Radius. Deshalb sagt man: Die Kugel hat positive Gaußkrümmung. Bei negativer Gaußkrümmung ist der Flächeninhalt auf der Oberfläche größer als in der Ebene. Das trifft für den Kühlturm zu. Diese Eigenschaft lässt sich innerhalb der Fläche untersuchen. Man braucht gar keine Einbettung in einen umgebenden Raum. Das ist zunächst sehr überraschend. Es ist aber unbedingt nötig für Anwendungen in der Astrophysik, wo die Raumzeit wegen der Gravitation gekrümmt ist (d.h. sie ist kein euklidischer Raum). Es hat aber niemand ein Bild, in welche höhere Dimension man die Raumzeit einbetten sollte, um dann mit der Krümmung in Bezug auf diesen Raum zu arbeiten.

Neben den beiden schon diskutierten Begriffen kann man auch mit der mittleren Krümmung arbeiten. Sie ist definiert als Mittelwert aller Richtungskrümmungen. Man kannn aber zeigen, dass dies stets das arithmetische Mittel zwischen minimaler und maximaler Krümmung ist. Dies hat auch eine physikalische Interpretation - z.B. als Flächenspannung für eine Membran, die eingespannt ist. Die Membran versucht, einen möglichst geringen Flächeninhalt - eine sogenannte Minimalfläche - zu realisieren, weil dies dem minimalen Energieaufwand entspricht. Spannungsfreie Flächen sind sehr stabil und deshalb für Architekten interessant. Im Schülerlabor Mathematik kann man mit Seifenhäuten selbst ausprobieren, welche Flächen sich hier für unterschiedliche Randkurven herausbilden. Z.B. wurde die Dachkonstruktion des ehemaligen Olympiastadions in München aus Minimalflächen konstruiert, die mit Seifenhäuten gefunden, fotographiert und nachgebaut wurden..

Mathematisch sprechen wir vom Plateau-Problem. Die Frage ist dabei: Hat jede geschlossene Kurve mindestens eine zugehörige Minimalfläche? Heute wissen wir, dass die Antwort - unter sehr geringen Regularitätsforderungen an die Kurve - fast immer ja ist. Sehr verblüffendend ist in diesem Zusammenhang auch der Satz von Gauß/Bonnet. Er sagt, dass das Integral über die Gaußkrümmung jeder in sich selbst geschlossenen Fläche ein ganzzahliges Vielfaches von 2π ist. Dieser Faktor heißt dann Euler-Charakteristik und hängt nur von der Topologie (grob gesprochen der Zahl der Löcher im Gebiet) ab. Beim Torus ist sie 0 und für die Kugeloberfläche 2.

Interessant ist in diesem Zusammenhang auch die Behandlung von nicht glatten Kurven bzw. Flächen mit Ecken und Kanten. An den Kanten ist das Konzept der Gaußkrümmung noch recht einfach übertragbar. Der betrachtete Kreis auf der Oberfläche klappt sich dabei um die Kante herum. An den Ecken geht das nicht so einfach, sondern führt auf komplexere Gebilde. Wenn man sich aber z.B. einen Würfel ansieht, hat dieser fast überall die Krümmung 0. Trotzdem ist er (topologisch gesehen) einer Kugel viel ähnlicher als einer Ebene. Hier kann man den Begriff der Gaußkrümmung richtig für Polyeder mit Kanten und Ecken verallgemeinern und der Satz von Gauß/Bonnet überträgt sich sinngemäß auf Polyeder. Das Integral wird zur Summe über die Polyederflächen und wir erhalten den wohlbekannten Polyedersatz:

Euler-Charakteristik mal Anzahl der Flächen - Anzahl der Kanten + Anzahl der Ecken = 2

Der Polyedersatz ist eigentlich ein kombinatorisches Ergebnis. Trotzdem zeigt sich hier, dass die topologischen Eigenschaften intrinsisch mit der Krümmung zusammenhängen, was sehr überraschend, aber auch sehr ästhetisch zwei einander sehr fremde Teilgebiete der Mathematik zusammenführt.

Lorenz Schwachhöfer hat in Darmstadt und in New Orleans Mathematik studiert und nach seiner Promotion 1992 (in Philadelphia) u.a. wissenschaftlich Station gemacht an der Washington Universität (in St. Louis), dem Max Planck Institut für Mathematik in Bonn, der Universität in Leipzig (dort Habilitation) und an der Université Libre in Brüssel.

Literatur und weiterführende Informationen J-H. Eschenburg & J. Jost: Differentialgeometrie und Minimalflächen. Springer Verlag, 3. Auflage, 2014. T. Matiasek: Seifenhäute und Minimalflächen: Natur, Geometrie und Architektur. VDM Verlag Dr. Müller, 2010 Wolfgang Kühnel: Differentialgeometrie: Kurven - Flächen - Mannigfaltigkeiten, Springer Verlag, 2013. Manfredo doCarmo, Differentialgeometrie von Kurven und Flächen, Vieweg+Teubner Verlag, 1993. Christian Bär, Elementare Differentialgeometrie, deGruyter, 2017. Video Seifenhäute (engl.) Podcasts P. Schwer: Metrische Geometrie. Gespräch mit G. Thäter im Modellansatz Podcast, Folge 102, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/metrische-geometrie L. Mirlina, F. Dehnen: Qwirkle-Gruppe. Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 76, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/qwirkle-gruppe