In this episode of the Epigenetics Podcast, we caught up with Sheila Teves from the University of British Columbia to talk about her work on the inheritance of transcriptional memory by mitotic bookmarking.


Early in her research career, Sheila Teves focused on the impact of nucleosomes on torsional stress and gene regulation. She also highlights the development of a genome-wide approach to measure torsional stress and its relationship to nucleosome dynamics and RNA polymerase regulation.


The conversation then shifts to her focus on transcriptional memory and mitotic bookmarking during her postdoc in the Tijan lab. She explores the concept of mitotic bookmarking, whereby certain transcription factors remain bound to their target sites during mitosis, facilitating efficient reactivation of transcription after cell division. She discusses her findings on the behavior of transcription factors on mitotic chromosomes, challenging the notion that they are excluded during mitosis. She also discusses the differences in binding behavior between the general transcription factor TBP and other transcription factors. Finally, the effect of formaldehyde fixation on the potential to find transcription factors bound to mitotic chromosomes is discussed.


 


References

Teves, S., Henikoff, S. Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 21, 88–94 (2014). https://doi.org/10.1038/nsmb.2723

Sheila S Teves, Luye An, Anders S Hansen, Liangqi Xie, Xavier Darzacq, Robert Tjian (2016) A dynamic mode of mitotic bookmarking by transcription factors eLife 5:e22280. https://doi.org/10.7554/eLife.22280

Sheila S Teves, Luye An, Aarohi Bhargava-Shah, Liangqi Xie, Xavier Darzacq, Robert Tjian (2018) A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes eLife 7:e35621. https://doi.org/10.7554/eLife.35621

Kwan, J. Z. J., Nguyen, T. F., Uzozie, A. C., Budzynski, M. A., Cui, J., Lee, J. M. C., Van Petegem, F., Lange, P. F., & Teves, S. S. (2023). RNA Polymerase II transcription independent of TBP in murine embryonic stem cells. eLife, 12, e83810. https://doi.org/10.7554/eLife.83810

Price, R. M., Budzyński, M. A., Shen, J., Mitchell, J. E., Kwan, J. Z. J., & Teves, S. S. (2023). Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes. Nucleic acids research, 51(10), 5040–5055. https://doi.org/10.1093/nar/gkad304


 

Related Episodes

In Vivo Nucleosome Structure and Dynamics (Srinivas Ramachandran)

From Nucleosome Structure to Function (Karolin Luger)

Structural Analysis of Nucleosomes During Transcription (Lucas Farnung)

 


Contact

Epigenetics Podcast on Twitter

Epigenetics Podcast on Instagram

Epigenetics Podcast on Mastodon

Active Motif on Twitter

Active Motif on LinkedIn

Email: [email protected]

Twitter Mentions